Calculation of CO₂ avoidance factors for Germany and France >

March 2022

Calculation for Germany¹>

The calculation method is identical for PV, offshore wind and onshore wind. However, different emission- and substitution factors are utilized. The emission gases CO_2 , CH_4 and N_2O are taken into account. This way, not only CO_2 emissions are being calculated but the respective CO_2 equivalents (CO_2 eq).

Calculation Germany CO2eq emissions CO2eq emissions from CO₂eq emissions avoided by RE generation avoided by (indirect emissions from RE generation, RE generation, manufacture of generating equipment, auxiliary energy, etc.) gross CO2eq emissions CO2 avoidance avoided by RE energy factor (CO₂eq) RE generation, generation net

 $^{^1}$ Source: Umweltbundesamt (Federal Environment Agency): Emissionsbilanz erneuerbarer Energieträger 2020 (Emission Balance of Renewable Energy sources), November 2021; gCO2eq/kWh: grams of CO2-equivalent per kilowatt-hour.

Calculation for France¹>

It is assumed that renewable generation in France substitutes conventional generation. Therefore, the specific CO_2 equivalent (CO_2 eq) of electricity generation in France is calculated from the generation data of conventional generation with the corresponding CO_2 emission factors.

The CO_2 avoidance factor from renewables is calculated for each generation type by subtracting the specific CO_2 eq from the life cycle of the respective renewable generation type from the calculated specific CO_2 eq from electricity generation.

Calculation France

Specific
CO₂eq emissions
from conventional
generation
in France

Lifecycle CO₂eq of specific renewable energy type

CO₂ avoidance factor (CO₂eq)

¹ Sources:

EnBW Energie Baden-Württemberg AG Durlacher Allee 93 76131 Karlsruhe Phone +49 721 63-00 www.enbw.com